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A numerical method has been developed for computing the velocity field adjacent to a free 
surface along with the surface shape for situations where both the inertial and viscous terms 
are important. The method is used to predict the shape and rise velocity of a Taylor bubble 
in stagnant or flowing liquid. Multiple theoretical solutions are shown to exist and the 
criterion for selecting the physically observable solution is indicated. 0 1990 Academic Press, Inc. 

1. INTR~DIJCTI~N 

When gas and liquid flow simultaneously upward in vertical tubes, the two 
phases distribute in a pattern known as slug flow for a wide range of flow rate pairs. 
This pattern occurs in a variety of industrial situations including geothermal, oil, 
and gas wells, oil-gas pipelines, steam generating boilers, and during emergency 
core cooling of a nuclear reactor among many such examples. Slug flow (Fig. 1) is 
characterized by the pseudo-periodic occurrence of large bullet-shaped bubbles 
which have a round nose, a comparatively flat bottom and occupy most of the 
cross-sectional area (referred to as a Taylor bubble). The liquid moves upwards as 
an aerated slug (referred to as a liquid slug) between two successive Taylor bubbles 
and flows downwards in the form of a liquid film around the Taylor bubble. Taylor 
bubbles and liquid slugs are alternatively spaced in the tube. Fernandes et al. [ 1 ] 
developed a detailed model for this type of flow which demonstrated that the flow 
characteristics of such systems (pressure pulsations, slug, and bubble lengths, 
holdup, pressure losses etc.) depend critically on the rise velocity of the Taylor 
bubbles. In order to advance the understanding of this complex system, we develop 
a numerical method for finding the bubble shape and translation velocity and 
examine solutions for single Taylor bubbles travelling in unaerated liquid, either at 
rest or moving upward at a prescribed velocity. While the methodology is 
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FIG. 1. Sketch of continuous slug flow. 
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developed in the context of this particular application we suggest that it is more 
generally applicable to the class of problems where both inertial and viscous forces 
must be considered and where free surfaces exist. 

Theoretical and experimental attention to this problem of the rise velocity of a 
Taylor bubble has been ongoing for almost a half century. A major line of attack 
for a Taylor bubble in a tube was initiated by Dumitrescu [a], who considered the 
problem as one of potential flow around an axisymmetric Taylor bubble with 
viscous effects neglected. This was followed over the years by theoretical contribu- 
tions of Davis and Taylor [3], Collins [4], Collins et al. [S], and most recently 
Bendiksen [6] and Nickens and Yannitell [7]. All of these investigators took the 
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fluid as inviscid. But in the film receding from the nose, viscous effects are impor- 
tant. Brown [8] tried to match the solution for potential flow with that for the thin 
receding viscous film with only partial success. The same potential flow approach 
was used for plane Taylor bubbles rising between parallel plates by Birkhoff and 
Carter [9], Garabedian [lo], Vanden-Broeck [ 111, and Couijt and Strumulo [ 123. 
In contrast, a series of attacks on the problem wherein the inertial terms were 
neglected, the creeping flow approximation adopted and thus the process con- 
sidered as viscosity dominated appear to have been initiated by Bretherton [ 131 
and followed, among others, by Goldsmith and Mason [14], Friz [lS], and more 
recently by Reinelt [ 161. Despite the linearity of the Navier-Stokes equations as a 
result of the creeping flow assumption, analytical solutions were possible only using 
additional assumptions and simplifications. It was only in 1987 that a full numerical 
solution of the creeping flow problem was generated and this was expensive in 
computer time [16]. To the knowledge of the authors, no general solution of 
the problem has appeared in which both the convective and viscous terms of the 
equations of motion are retained. 

Many experimental investigations on this subject have also been conducted. 
Harmathy [17] and White and Beardmore [18] did systematic experimental 
measurements of the rise velocity of axisymmetric bubbles in vertical tubes, Zukoski 
[19] and Weber er al. [20] explored the effect of tube inclination on the translation 
velocity. Corresponding studies for the plane bubble were reported by Maneri and 
Zuber [21]. 

In this paper, a method is developed for solving the flow field around a Taylor 
bubble. The problem is particularly challenging because the shape of the interface 
between gas and liquid cannot be specified in advance and determining this shape 
and thus determining the computational domain is, itself, part of the problem. For 
the purpose of clarity, only the case of laminar flow is addressed in this paper. With 
the structure of the algorithm established, the method can readily be extended to 
include a turbulence model for higher flow rates and this is done in a followup 
paper by Mao and Dukler [22], where comparison with experimental data is 
included. 

2. FORMULATION OF THE PROBLEM AND THE SOLUTION STRATEGY 

Consider a single Taylor bubble of finite length moving at a velocity UN relative 
to the fixed walls in a liquid which is also flowing upward (Fig. 2a). This unsteady 
problem becomes a steady one if the reference frame moves at the velocity of the 
Taylor bubble U, (Fig. 2b). The transformation of coordinates system is simply 

x=x(-- U,t, 

Y = Y’, 
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FIG. 2. A Taylor bubble rising in a vertical pipe: (a) in fixed coordinates; (b) in moving coordinates. 

which fixes the Taylor bubble relative to the coordinate system. If a new velocity 
variable, U, is defined as 

u=u’+ UN, 

the Navier-Stokes equation becomes a steady-state one, 

pu*vu= -vp+/Pu, 

to be solved together with the continuity equation, 

vu=o, 

subject to a set of boundary conditions. In a two-dimensional coordinate system, 
the equations are 
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following the form given by Pope and Whitelaw [23], where r E 1 for Cartesian 
coordinates, r = y for cylindrical coordinates and curly brackets indicate the terms 
present only in cylindrical coordinates. 

The domain of solution consists of the axisymmetric volume enclosed by surfaces 
a-b-c-d-e shown in Fig. 2b. A no slip boundary condition exists at the wall (along 
e). Experimental data show that the entire Taylor bubble is a region of constant 
pressure. The curved interface of the Taylor bubble (along c) is thus a free surface 
along which the shear stress is uniformly zero and the following conditions exist: 

(7.n).s=O, (zero interfacial shear stress) (4) 

u.n=O, (kinematic condition) (5) 

piL + aK = const. (normal stress balance). (6) 

Scaling arguments can be used to show that the viscous terms can be neglected in 
Eq. (6) for nominal viscosities. The curvature K is defined as 

o is the surface tension, and rl , r2 the local principal radii of curvature at the 
bubble surface, 

(8b) 

piL is the pressure on the liquid side of the interface (the viscous normal stress 
included), and q(x) the radial distance from the axis to the interface describing the 
shape of the bubble; T is the shear tensor, n the unit normal vector, and s the unit 
tangential vector at the interface. The shape of the curve is unknown in advance 
of the numerical simulation, hence it is part of the solution. The downstream 
boundary conditions (along d) are chosen such that the flow is parallel and the 
velocity gradient is zero in the x direction. Upstream (along a) the liquid flows with 
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a fully developed velocity distribution w(y’) in fixed coordinates, and UN - w(y) 
in moving coordinates. 

The problem can be summarized as follows: with known diameter of tube;length 
of the Taylor bubble and physical properties of the fluid, determine the shape of the 
Taylor bubble, its translation velocity, and the velocity at all positions in the liquid 
around the bubble. The mathematical task can be similarly set for slightly modified 
boundary conditions. The case of two Taylor bubbles in a continuous slug flow will 
be addressed in a sequel of this paper. 

The strategy of solution is to subdivide the problem into three steps: 

(1) Solve for the flow field around a Taylor bubble subject to appropriate 
boundary conditions, but with an initially assumed shape and U,; 

(2) Adjust the shape function q(x) in a prescribed fashion to satisfy the 
balance of normal stress at the interface such that constant pressure is maintained 
in the bubble and no flow takes place across its interface. 

(3) Adjust U, to satisfy the criterion that a symmetric Taylor bubble is 
locally spherical at the nose in the presence of nonzero interfacial tension 

These three steps are detailed in Sections 3 through 5. The computational scheme 
involves (a) the construction of a special grid system particularly suited to 
accurately applying the boundary conditions at the interface, (b) the use of differen- 
cing method developed here for handling the strong convection terms in problems 
of this type where the grid spacing is highly nonuniform and when the velocity can 
be strongly skewed to the coordinates of the grid, (c) modifying the shape by the 
use of a corrector differential equation, (d) incorporating the effect of the surface 
tension which introduces third order into the problem through a first-order effect 
differential equation approximation, and (e) adjusting the rise velocity according to 
the value of the gradient of the curvature at the nose. 

3. COMPUTATIONAL SCHFME GIVEN A SHAPE 
PROFILE AND A RISE VELOCITY 

The numerical method selected is the control volume approach outlined in detail 
by Patankar [24]. This method incorporates some of the characteristics of finite- 
difference as well as finite-element methods. The momentum equations are 
integrated over a control volume consisting of a single specific cell as done in finite- 
element methods. This yields a discretized equation which involves the parameters 
of the adjacent cells as in finite-difference methods. A staggered pattern of alloca- 
tion of velocity components U, u, and the pressure p nodes is used as shown in 
Fig. 3 for typical interior and surface locations. The nodes for pressure are also the 
location of other scalar parameters such as temperature or concentration when 
appropriate with u and u nodes located on the faces of a p cell. 
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FIG. 3. A staggered distribution of nodes in the interior and on the boundary. An incomplete 
pressure cell is shown at the border curve. 

The Gridding System 

In order to satisfy the condition of zero stress along the free surface, high enough 
accuracy is needed to compute reliable values of the derivatives of the velocity com- 
ponents. For this purpose a gridding scheme of the type suggested by Williamson 
[25] is applied to this problem but with velocity and pressure cells generated by 
the grid assigned in a particular way such that the interfacial shear stress condition 
can be applied accurately. This special gridding procedure is illustrated in Fig. 3. 

Lines of constant x are drawn through the interface with spacing Axi selected to 
be smaller in regions of larger curvature of the surface. These lines are marked (a) 
in Fig. 3. Nodes for the surface u cells are designated where these lines intersect the 
surface. Constant y grid lines, marked (b), are then drawn to intersect with these 
u nodes on the surface. The spacing Ay, is thus determined by the curvature of the 
surface and varies with position. The (a) and (b) lines drawn in this way create the 
u cells. o and p nodes are located as follows: Dashed vertical lines marked (c) are 
located midway between each adjacent pair of constant x lines. Where this inter- 
sects the interface is the surface u node. Horizontal lines marked (d) are extended 
from the surface o nodes. Each intersection of an (a) and (b) line is a u node, the 
intersection of (c) and (d) lines is a u node and the intersection of (b) and (c) lines 
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a p node. In this way the staggered network of nodes and their cells are formed. 
All interior u and o cells over which the balances of momentum are made are 
rectangular. Variables u and u at the surface are obtained by applying the surface 
boundary conditions as described below. Values of p on the surface are obtained by 
nonlinear extrapolation from the interior nodes. Now all the interpolation and 
extrapolation are performed with the same scheme because all the incomplete cells 
are topologically the same. The disadvantage of this grid system rests in its non- 
uniformity of gridline spacing, which is less accurate for a fixed number of grid lines 
than is a uniform distribution. Desired accuracy can be achieved by using more grid 
lines or a better differencing scheme. However, no partial velocity cells exist at the 
interface; thus the boundary conditions which exist there can be satisfied accurately. 

When the p cells are formed, certain uncovered spaces exist near the interface as 
shown in Fig. 3. The p cells are used only to execute a material balance using the 
SIMPLE algorithm [24] in order to test and adjust the pressure field. This balance 
can be accurately accomplished in these partial cells by equating the flow indicated 
by arrow A to that by arrow B. In this way a surface-fitted staggered coordinate 
system has been created which is particularly suitable for applying a surface stress 
condition. 

The gas-liquid interface is regarded as a free surface without shear stress and 
at constant pressure. In Cartesian coordinates and for a Newtonian fluid, the 
interfacial shear stress condition Eq. (4) reads 

(9) 

where p is the liquid viscosity, n, and nY are the x and y components of the unit 
normal to the surface, and subscript i stands for the interface. Given a surface 
shape, the surface velocities are obtained by application of Eq. (9) with the 
prescribed surface shear stress ri and the kinematic condition at the interface, 
Eq. (5), which now reads 

n,uj+n,ui=O. (10) 
The procedure can be understood by reference to Fig. 4 for the case where ?i = 0. 
At each iteration the interior of the domain is solved first. Then v2, v3, uq, and u5 
are obtained by interpolation from values at the adjacent nodes. Quadratic inter- 
polation formulas are then employed for the gradient terms in Eq. (9) using ui, z+, 
and u3 for au/ax; u,, u4, and u5 for au/ay; v,, v2, and v3 for au/ax; vl, v4, and v5 

for &lay. Since all the interior velocities are available from the interior nodes, the 
only unknowns in Eq. (9) are the surface velocities, ui and v,. These two quantities 
can thus be determined between Eqs. (9) and (10). The velocity at the vi node 
located on the surface between two ui nodes is obtained by interpolation. 

Differencing Process 

The differential equation to be solved is first integrated over the control volume 
of a cell in the sense that the fluxes at all faces of a cell are in balance with the 
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Boundary Curve 

FIG. 4. Evaluation of the velocity gradients needed for the shear stress condition at the surface. 

accumulation and source terms inside the cell. Then the process of discretization is 
carried out. The flux J on each face of a cell is determined from the values at the 
neighboring nodes and the properties on the faces. The final form of the discretized 
momentum equation will depend upon the differencing scheme used to estimate the 
fluxes across the faces of a cell due to convection and diffusion. A large variety of 
differencing schemes have been proposed in the past, among which are central 
difference scheme (CDS), upstream hybrid difference scheme (UHDS), upstream 
power-law difference scheme (UPDS), skew upstream difference scheme (SUDS), 
and skew upstream weighted difference scheme (SUWDS). 

The balance of the transport fluxes through all the cell faces, J, and source terms, 
S>, over a cell for a transportable physical variable, 4, is 

J,-J,,,+J,,-Js=S4, (11) 

which results in a steady-state two-dimensional discretized differential equation, 

where the coefficient a for the center node is 

ap=C anbT 
nb 

(12) 

and S, is nominally the source term, subscripts n, e, s, and w denote the four faces 
of the cell, p for the center node, nb representing the north, east, south and west 
neighboring nodes. In order to guarantee the convergence in solving iteratively the 
resulting algebraic equation set, all those differencing schemes manage to make the 
a,&‘s positive. If care is taken in expressing S, in terms of dp, the convergence of 
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solution of Eq. (12) is assured. The boundary conditions can be easily incorporated 
by means of pseudo-source terms as explained by Patankar [24]. 

Early versions of these ideas were implemented with UHDS by Gosman et al. 
[26] in a computer code designated as TEACH and successfully used to solve a 
variety of problems in single phase flow and transport of scalar quantities (for 
example, Armaly and Durst [27]). This program was shown to be efficient and 
stable for high Reynolds number flows. However, Leonard [28] and Leschnizer 
and Rodi [29] documented the fact that UHDS is subject to significant errors due 
to numerical diffusion as a result of truncation in interpolation and evaluation of 
convection terms. The damage from this procedure is shown to be especially severe 
when the flow is highly skewed relative to the numerical mesh and the streamwise 
grid Peclet number, P = VA/v, exceeds 2, where V is the absolute value of charac- 
teristic fluid velocity in the concerned direction of coordinate axis, A the mesh size 
in the same direction, and v the kinematic diffusivity for the transported variable. 
This situation exists in the case of a rising Taylor bubble especially at the highly 
curved interface near the nose region of the bubble. Thus it became necessary to 
explore alternative differencing schemes. 

Studies by Leonard [28], Pollard and Siu [30], and Huang et al. [31] compare 
various schemes. From their work it is apparent that when using quadratic inter- 
polation the difference equations become accurate to terms including the second 
derivative and numerical diffusion is sharply decreased. The advantages of this 
method of Leonard [28], called quadratic upstream interpolation for convective 
kinematics (QUICK), are particularly important when convection terms are domi- 
nant as they are here and when the spacing between the grids changes rapidly as 
is the case near the nose of the bubble. A revised version of this differencing scheme 
was developed for control volume formulation by Pollard and Siu [30] and is 
designated QUICKER. In applying this scheme to control volume formulation a 
nine-point configuration in Fig. 5 is used. 4 at west and east faces, 4, and #,, can 
be interpolated quadratically in one of the following two ways depending upon the 
sign of u, and u,: 

4w=aw~ww+/L4w+~w~p~ if u,>O, (134 

hv=hv4E+L4P+~w~W~ if u,<O, (13b) 

A=ae4W+BebP+YP4Et if u,> 0, (144 

4, = Se#m+ QE+ LdP3 if u, CO, (14b) 

where the interpolation coefficients are relied on the grid system. Similar expres- 
sions can be written for interpolation of 4, and 4,. In order to ensure all the coef- 
ficients in Eq. (12) positive, Pollard and Siu [30] manipulated the choice of anb 
such that they are always positive and absorbed the remaining terms into a source 
term. Wasden [32] extended the QUICKER to non-uniform grids. In order to 
promote convergence, the algorithm is further modified in this work to make use 
of the upstream-dominant nature of flow of low viscosity fluid. The coefficients anb 
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FIG. 5. A nine-point configuration for discretization by the QUICK algorithm at node P. The inter- 

polation coeflicients used to obtain values of the parameter at west and east faces are denoted; two 
upstream nodes are always used in the interpolation. 

for the downstream interfaces are manipulated such that they simply consist of the 
part due to diffusion, 

D’=& i = n, e, s, or w, 

where (6~)~ is the distance between the center node and a neighboring node. Thus 
unb is smaller in magnitude compared with the upstream ones. Numerically, the 
downstream flow has a weaker influence on the process of solution in the current 
iteration. Specified upstream boundary conditions thus convey their influence 
more quickly to the flow field. Meanwhile any possible numerical disturbance is 
more difficult to propagate upstream and cause divergence. After this modification, 
the coefficients read 

0, = SD,, (De - ~,c,)‘, 

a, = SD,, (Dw + SwG)“, 

a, = SD,, (D, - E, Cn)‘, 

a, = SD,, V’s + Bs CA’> 

UW 

(15b) 

(15c) 

(15d) 
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where Ci is the mass flux through the cell faces. If the flow is from the east to the 
west, both C, and C, are negative and we will have a, = D, - E, C,, which is greater 
than a, = D,. The source terms become more complex, 

S,=a,M,+C,~,,+a,M: C,d,s- S,M, C,d,,- St&f, C”$NN 

-Ml+ Ce(%4w+ Ye#E) -M,+ Cn(%z~w+ YndN) 

+ M, cw(kv4E + Lv4w) + M, C,(6,4, + ids), (16) 

sb= -B,M,+C,-DnM,+C,+E,M,C,+E,M,C, 

+ CBS + Ys) M,+ cs + (Bs + YJ M: c&v 

- (E, + L-1 M, c, - (En + in) M, c,, (17) 

where 

Mt=Ci+lCil 
I 2Ci ’ 

MT -ci-IciI 

’ - 2ci ’ 
i = n, e, s, w. (18) 

The modified program converges with a relaxation factor of 0.5 and the speed of 
convergence is satisfactory. As an illustration of the suitability of the revised 
QUICKER algorithm vs UPDS, calculations were made of the pressure profile 
along the prescribed free surface of a Taylor bubble using both methods. The 
results in Fig. 6 show that computational results are essentially independent of grid 
size using the revised QUICKER algorithm in contrast to results from UPDS. 

In order to solve for the pressure field, the continuity equation is used in an algo- 
rithm designated SIMPLE (semi-implicit method for pressure-linked equations) by 
Patankar and Spalding [33]. The pressure does not appear explicitly in the 
continuity equation, but given a pressure field the velocity distributions can be 
obtained numerically from the momentum equations. Then a test is made to see if 
the continuity equation is satisfied. SIMPLE incorporates a procedure to solve for 
the correction needed to the pressure as well as the velocity fields u and v to mini- 
mize the discrepancy before the next iteration is invoked. Relaxation is necessary 
when applying the corrections to existing pressure and velocity fields. The correction 
on the u and v lields may lead to deviation from the momentum balance, therefore an 
iterative loop is designed; the solution proceeds in a loop structure for u, v, and p 
in sequence, followed by other scalar parameters such as temperature or turbulence 
parameters, where applicable. All the discretized algebraic equation sets are solved 
by the alternating direction implicit (ADI) method with suitable relaxation. 

The Computed Results 
Thus, given the domain including the shape of the free surface, the translation 

velocity of the bubble, an initial distribution of velocities, pressure, and the shear 
stress distribution along the interface, the code converges to specific velocity and 
pressure fields. Figure 7 shows the stream function contour map for a bubble rising 

581/91/l-IO 
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Revised QUICKER 
n 0.05 mm 

Q 0.10 mm 
X 0.15 mm 

0 0.30 mm 

0 0.001 0.002 0.003 0.004 0.005 

x, m 

FIG. 6. Sensitivity to grid size of computed pressure at the free surface for UPDS and the revised 
QUICKER algorithms. The size of the nose cell is annotated in the legend. 

FIG. 7. Streamline map of the flow around a Taylor bubble in stagnant water in a 0.05 m I. D. pipe. 
The map covers an area of 5 by 2.5 cm, the rise velocity of the bubble is 0.20 m/s, and no surface tension. 
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Axisymmetric Bubble 

1000 

UN= 0.20 In/s 
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FIG. 8. Surface pressure profile of a Taylor bubble with specified Dumitrescu shape profile and rise 
velocity. 

in a 0.05 m diameter pipe through stagnant liquid at U, = 0.20 m/s having a shape 
computed from a solution given by Dumitrescu [2] as shown in Fig. 9 CPU time 
needed on a HITACHI NAS9000 computer (equivalent to IBM 3033) was 
approximately 200 s. Computed pressure along the free surface is shown in Fig. 8 
and it is evident that the specified shape cannot satisfy the physical requirement of 
constant pressure along the free surface. Thus, it is necessary to develop a technique 
to adjust the interfacial shape to meet this constant pressure condition. 

Axisymmetric Bubble 

u,= 0.20 In/s 

l Initial shape 
- Corrected shape 

0.0 0.1 0.2 

x, m 
FIG. 9. The shape profile of a Taylor bubble with designated rise velocity. The solid line indicates 

the shape profile under constant pressure. 
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4. CONVERGING ON THE SHAPE (ZERO SURFACE TENSION) 

A method is developed below by which the solution of a first-order differential 
equation is used in order to converge on the bubble shape profile with constant 
pressure. We start with the mass conservation and the integral x-direction momen- 
tum equations. 

A(u) =q, (20) 

where r is the wall shear stress, L the wetted perimeter, q the volumetric flow rate 
in the falling film which is constant over the whole range of x, and ( ) indicates 
an average taken over the flow area. Quantities calculated from the equations after 
an adjustment in the interface location are designated with a superscript asterisk 
(*). Thus, we have 

d 
pq-&A*(u*u*)]=--&A*(p*)]+pgA*+p:,f$r*L, 

A*(u*) =q. 

Now, define a velocity shape factor, 0(x), such that 

(uu) = (1 + 0) (U)(U). 

Subtracting Eq. (19) from (21) and substituting Eqs. (20) and (22) gives 

P4$ ((1 +W))((U*)- (UN> 

= -~(A*(~*)-A(p))+p:L~-pj~~ 1 
or 

+[&A*-A)]+[-(z*-z)L] (24) 

(25) 

where & includes all the terms involving pressure in Eq. (24). 
Designate a(x) as the ratio of the adjusted to the unadjusted pressure gradient 

and E(X) the fractional change in flow area, 

(21) 

(22) 

(23) 

(26) 

A*-A 
E(X) = 7’ 



TAYLOR BUBBLES IN VERTICAL TUBES 147 

d1 can be expressed as 

From the definition, 

6P(x)= (P>-PiL3 (30) 

& can similarly be expressed in terms of these same quantities in addition to 6p* 
and 6p, 

il=-$[(1+E)A6ptl+~[A6pl+(l-1-as)~~. (31) 

It is necessary to relate 6p* to E and other currently known quantities. 6p* is 
estimated using the y-direction momentum equation in the following manner. In the 
region of the nose of the bubble the viscous stresses are negligible and this equation 
can be integrated in the y direction to find Ap(x), the difference between the 
pressure at the wall and the interface, 

(32) 

where vi is the y-direction velocity at the interface and q(x) the shape profile 
function. From Eqs. (20), (22), and (27), it follows that (u*) = (u)/( 1 + E). From 
the definition of the average velocities and using the fact that for small E, 

1 
-zl-&, 
l+E 

it can be demonstrated that u* = u/(1 + E) as E +O and the local slope of the 
streamlines keeps its value, or (u*/u*) + (u/u). Thus u* = o/(1 + E) as E --, 0. Since 
Ap* is also defined in- Eq. (32), the following relationship is established between 
Ap* and Ap, 

Ap*(x) = &y AP(X). 

Now it is assumed that in the limit E -+ 0, Ap is proportional to 6~; therefore, 

1 
dP*(x) = (1 + e)* dP(X). (34) 
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Thus, Eq. (31) reads 

(35) 

The gravity term in Eq. (24) becomes 

$&=pg(A*-A)=pgA&. (36) 

Since the shear stress can be related to the velocity, r z ((u) - UN)“, the shear 
stress term can be expressed as 

+nErL/( l- yy 

In arriving at Eq. (37), the approximation of Eq. (33) is used again. In laminar 
flow, n is 1. Since the wall stress term is not dominant for a Taylor bubble rising 
in stagnant liquid, n = 1 is used in this study. 

The various expressions for 4 are combined to produce a differential equation for 
the correction to the shape, E(X), 

where 

aJ1+e)pq2+A6p 
A(l+&)* ’ 

b=d(Ad~) aAd~i~ (l+e)~q*dA -- 
dx dx A*(l+&) dx 

+ pq* de --+pgA+ 
TL 

A(1 +E)dx 1 - iJ,AIq’ 

The computations proceed as follows: Given an initial value of bubble velocity, 
U,, and interfacial shape, which fixes A(x), the computational scheme described in 
Section 3 is carried out until nearly converged. These values of the velocity and 
pressure fields are used to obtain values of 0(x), 6p(x), and r. Equation (38), the 
differential equation for E(X), is then solved numerically with initial condition 
s(O) = 0. Choice of an initial value of a is discussed below. This produces a new 
profile, A*(x); then the flow lield is computed iteratively, and the solution of the 
differential equation for E(X) and thus for an adjusted A(x) is obtained again. This 
process is repeated until E(X) becomes small. At the same time dp,,/dx becomes 
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small, i.e., the surface pressure approaches a constant value. In a typical problem, 
about 500 iterations are necessary to reduce E to the order of lop5 and this takes 
20 min of CPU time on an NAS9000 computer. 

A number of precautions are necessary to ensure the overall convergence. Too 
large a value of E from the solution of Eq. (38) during the initial iterations will lead 
to trouble. The initial value of tx is arbitrary in the range of 0 to 1. Equation (26) 
shows that as convergence is approached, CI loses physical significance since dp,,/dx 
and dp$/dx approach zero. It is thus used as a control parameter for E and its value 
is arbitrarily selected so that in no case does E exceeds 0.15. Convergence would 
proceed more rapidly by using the smallest possible value of CY subject to the 
constraint E < 0.15. 

Under certain conditions the method of solution outlined here can lead to an 
artificially wavy interface. The result will be a wave-like behavior of small 
amplitude having a half-wave length equal to Ax of the cell. This can be easily 
checked by doubling the grid lines. If waviness once again appears with a charac- 
teristic length of the grid dimension, then it is apparent that the waviness is a com- 
putational artifact. When this occurs, the final step involves smoothing the surface 
profile using a quadratic expression for the interface shape over four surface nodes. 
Computation of the pressure over the smoothed surface made for a series of such 
runs showed that there was negligible change in meeting the condition of constant 
pressure at the interface. 

The ability of this computational method to arrive at a surface shape which 
satisfies constant surface pressure conditions is illustrated in Figs. 9 and 10. For the 
axisymmetric bubble rising at 0.2 m/s the change from the initially assumed shape 
and the final one is shown in Fig. 9. The pressure along the surface appears in 

4 

Axisymmetric Bubble 
2 

0.0 0.1 0.2 0.3 0.4 

x, m 

FIG. 10. Surface pressure profile after successful adjustment of the shape profile. The same case is 
shown in Fig. 8 and 9. 
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Fig. 10 and should be compared with the results shown in Fig. 8. The variation in 
pressure across the converged shape is less than 0.2% of the original variation of 
pressure. Similar computations were carried out for a wide range of bubble 
velocities and initial shapes for both axisymmetric bubble and for two-dimensional 
planar bubbles. Figures 11 and 12 show converged shapes for three bubble transla- 
tion velocities in axisymmetric and planar configurations. Also shown is the inter- 
face curvature as a function of position along the surface, s. Note that consistent 
with the conclusion of Garabedian [lo] for potential flow, there exists a converged 
solution for every bubble velocity. It is now necessary to identify the particular 
bubble velocity and shape that are physically realistic. Before this is possible, the 
role of surface tension must be explored. 
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FIG. 11. Axisymmetric Taylor bubbles with designated rise velocity. D = 0.05 m, p = 0.001 N. s/m*: 
(a) shape profiles; (b) curvature profiles. 
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FIG. 12. Planar Taylor bubbles with designated rise velocity, D = 0.05 m, p = 0: (a) shape profiles; 
(b) curvature profiles. 

5. CORRECTING THE SHAPE FOR INTERFACIAL SURFACE TENSION 

In the presence of nonzero surface tension the interfacial boundary condition in 
the liquid is 

PiLEPiG-Po, (39) 

where piG and piL are the pressures on the gas and liquid sides of the interface 
respectively and 

po==K (40) 
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where K the curvature is defined by Eq. (7). Clearly K, pa, and piL are functions of 
x. Thus, the algorithm detailed in Section 4 for finding the interfacial profile by 
converging on a constant interfacial pressure, pit, must be modified since in the 
presence of surface tension, piL will no longer be constant along the curved surface. 

A modified form of Eq. (38) is developed by eliminating piL using Eq. (39). (p) 
is still obtained by averaging between the wall and piL; 6p(x) = (p) - piL = 
(p) - piG+ p,. Substituting the expression of Pi, and 6p(x) into Eq. (24) and 
reevaluating &, Eq. (38) now becomes 

where 

a J1+e)pq2+Adp 

1 A(l+&)* ’ 

b =d(AGP) c(AdPiC (1+e)Pq2dA 
1 

-- 
dx dx A2(1+&) dx 

+ pq* de 4: 
---+Ax++gA+ 

TL 
A(1 +c)dx 1 - U,A/q’ 

Trial computations show that dp,*/dx changes only a little from iteration to 
iteration since E(X) is usually small. It thus can be estimated using dp,/dx in the 
expression of b, where its full value, not the difference, is used. 

The last term which appears in Eq. (41) as a result of surface tension introduces 
extreme complexity to the problem, since this involves dK/dx. K includes the second 
derivative of the surface position with respect to x (Eqs. (7) and (8)) which is 
related to the second derivative of A and to E through Eq. (27). The last term in 
Eq. (41) thus involves the third derivative of E(X). A direct solution of this third- 
order differential equation in E is a formidable task as it deals with a boundary 
value problem requiring a process of shooting at two unknown boundary condi- 
tions at the nose. Outlined below is an iterative method which incorporates the 
important influence of surface tension while working with first-order equations. 

Define s1 as the solution to Eq. (41) with the surface tension term neglected, 

o,2+b,~,= -A(h)%. (42) 

Set .s=si -s2. Then the difference between Eqs. (42) and (41) gives a differential 
equation for .s2, 
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Equation (42) can be solved for a1 in a manner identical to that described earlier 
in finding E with Eq. (38). Initially setting c2 = 0, a modified shape can be com- 
puted. This and the original shapes are then used to generate K*(x) and K(x) and 
values of (p,* - p,), and its x derivative as a function of x can be computed. In 
order to find (p,* - p,) needed for the solution of Eq. (43), a constant y can be 
assumed such that 

d(p,* - p,Wx = yd(p,* - p,hldx. (44) 

y can be shown to be between 0 and - 1.0. Note that y loses its physical significance 
as convergence is approached and can thus be used as a control parameter for the 
calculation of c2. The substitution of Eq. (44) now makes it possible to solve 
Eq. (43), a first-order equation for z2 using an initial assumption for y. The new 
E = sl - a2 is then used to adjust the shape of the boundary and the next estimate 
of (p,* - p,) obtained. The ratio of this new value to (p,* - P,)~, the updated y, can 
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FIG. 13. Flow sheet of the computational process. 
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now be compared with the assumed value and a new selection made. It has been 
found economical of computer time to loop back to the computation of the flow 
field at this point rather than converge on y. A convenient initial value for y has 
been found to be -0.5; a smaller value approaching zero should be chosen in case 
that surface tension becomes larger. 

The overall computational procedure can be understood by reference to Fig. 13. 
The algorithm can be viewed in the three parts described in the Sections 3 
through 5. This entire process for computing the shape as well as the flow and 
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FIG. 14. Effect of the surface tension on the Taylor bubble with designated rise velocity: (a) the 

shape profiles; (b) the profiles of curvature. The comparison is made between cases with 0 = 0 and 
0.075 N/m. 
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pressure fields for one bubble of specified translation velocity requires about 40 min 
of CPU time on NAS9000 computer when 52 grid points in the x direction and 39 
in the y direction are used. 

Figure 14 shows the effect of the surface tension correction on the computed 
shape for the physical rise velocity for a Taylor bubble in stagnant water (tube 
I.D. = 5 cm, p = 1 N.s/m* and (T = 0.075 N/m) The effect appears small on both the 
shape profile and the curvature near the nose for a bubble rising at a velocity close 
to the physically observed value (0.245 m/s). But the effect is more significant when 
the surface tension is larger or the pipe has a smaller diameter. However, as will be 
shown below, surface tension acts in a subtle manner to isolate that single bubble 
velocity observed experimentally from the infinite array of possible values all of 
which satisfy the condition of constant pressure in the gas, no flow across the 
interface and no shear stress at the interface. 

6. A CRITERION FOR SELECTING THE PHYSICALLY OBSERVED 
VELOCITY OF A TAYLOR BUBBLE FROM 

THE INFINITY OF POSSIBLE VALUES 

Garabedian [lo], investigating two-dimensional bubbles rising in an ideal fluid, 
recognized that multiple solutions exist and suggested that the physically observed 
rise velocity would be the one which maximizes the rate of dissipation of potential 
energy as the bubble rises. However, as is apparent from the discussion in Sec- 
tion 4, this maximum increases without bound as the bubbles become more slender 
and more pointed at the nose. Furthermore, Kelessidis [33] studying Taylor bub- 
bles in an annulus concluded that asymmetric bubbles rise faster than symmetrical 
ones. But such asymmetry is not observed experimentally in a vertical pipe. In 
analyzing two-dimensional potential flow around a Taylor bubble, Vanden-Broeck 
[ 11,351 limited acceptable solutions to those whose bubble shape at the nose dis- 
played a zero slope, dq(y)/dy = 0. This approach placed an upper bound on the 
translation velocity (critical Froude number Fr, =0.36, with the delinition 
Fr = U,/@), but it still permitted an infinite number of discrete values below 
this maximum, each of which satisfies the equations of motion and interface 
boundary conditions with a zero slope at the nose. Couot and Strumulo [12] also 
solved for the shape and rise velocity of a two-dimensional Taylor bubble and 
explained inconsistencies between the work of Vanden-Broeck and Garabedian 
as due to the number of terms retained in the series expansion for shape. They 
suggested that the single maximum velocity out of the infinity discrete values would 
be the one observed in the experiment, although no physical basis for this choice 
was indicated. 

No multiplicity has been reported in the solutions of axisymmetric Taylor bub- 
bles. Earlier investigators [2, 31 assumed the shape of the nose remains spherical 
over arbitrarily selected lengths of the surface near the nose. By changing that 
length, the computed value of the translation velocity changes. These solutions do 
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not satisfy the condition of zero pressure all along the surface. In analyzing the 
problem where viscous terms are dominant, Reinelt [16] avoided the problem of 
multiple solutions by arbitrarily specifying the type of the function to depict the 
bubble shape. By that specification, the shape function was reduced in the vicinity 
of the nose to v](y) = a + by2 + cy4 + . . . , since only even powers of y and even 
Chebyshev polynomials were used. Recently, Bendiksen [6] solved for the potential 
flow around a Taylor bubble in pipe including the effect of surface tension. He 
followed the procedures suggested by Dumitrescu [2] to expand a truncated 
theoretical solution of Stokes stream function $ into a Taylor series and solved for 
the coefficients in the II/ expression. By truncating the power series in the equation 
for the bubble shape q(y), he obtained a quadratic equation in q(y) and restricted 
the solutions to two in number, only one of which was physically meaningful. He 
chose to expand q(y) in y* and included the surface tension, finally evolving a 
bubble with a spherical nose. 

It is suggested here that in the present of nonzero surface tension, no matter how 
small the interface must display continuity at the nose. Thus the physically realistic 
translation velocity results from the action of surface tension on a symmetric 
bubble, which tends to cause a locally spherical nose. The extent of this sphericity 
along the surface will vary with magnitude of the surface tension, but in the limit 
as x + 0, the surface is spherical. The symmetry of the bubble nose requires that the 
interface be expressed in terms of an even series of y as did Reinelt and Bendickson 
but we require that the radius of curvature be constant with changes in position 
along the bubble only at the nose. Thus the criteria is 

dK/ds = 0, s -9 0. (45) 

Now it is possible to extend the computational scheme of Section 6. The gradient 
dK/ds is evaluated at the nose: if it is positive, the computation is repeated with a 
larger translation velocity; if negative, a smaller one is used. The converged results 
are shown in Fig. 15 for an axisymmetric bubble and in Fig. 16 for a two-dimen- 
sional bubble (D = 0.05 m and p = 0.001 N. s/m*). They demonstrate that this 
criterion, based on an understanding of the role of surface tension, can isolate the 
physically observed bubble. The solved examples are summarized in Table I. It is 
noted that no a priori form of shape function is prescribed in this numerical 
approach. The translation velocity for which dK/h = 0 at s = 0 is 0.242 f 0.002 m/s, 
yielding a Froude number of 0.345; with (T = 0.075 N/m, UN = 0.241 m/s or 
Fr = 0.344. Both are in good agreement with the value of 0.35 from the experiments 
for water. Shown in Fig. 15 are the values of curvature, K, as a function of position 
along the surface. A simulation for a 2.5 cm diameter tube gave the result of 
Fr = 0.344 for air-water system with cr = 0, also in excellent agreement. Similar 
results appear in Fig. 16 for a two-dimensional bubble. Using the same criterion for 
isolating the physical bubble, the computed translation velocity U, = 0.1562 m/s or 
Fr = 0.223 + 0.002 for cr = 0 and U, = 0.1560 m/s or Fr = 0.223 for e = 0.075 N/m, 
while the experimentally accepted value is 0.23. 
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FIG. 15. Computational results of a Taylor bubble with a spherical nose in a 0.05 m I.D. pipe.: 
(a) shape profiles selected by the criterion; (b) curvature proliles for the bubbles with the criterion- 
selected rise velocity (0.241 m/s) and with specified 0.20 m/s. 



158 MAO AND DUKLER 

Planar Bubble 

r 

0.00 

0.00 

Q = 0.075 N/m 
q (J=o 

+ Axisymmetric, CT = 0.075 N/m 

I 1 

0.02 0.03 0.04 0.05 

80 

t 

00 U=O.l56mk 

0 0 Q= 0. 

(4 

60 - 
0 

0 W 

40- 0 
0 

20 - 
Planar Bubble 

O- 
0.0 0.01 0.02 0.03 0.04 0.05 

s, m 

FIG. 16. Computational results of a Taylor bubble with a spherical nose in a D = 0.05 m two-dimen- 
sional channel: (a) the shape profiles selected by the criterion; (b) the curvature protiles for bubbles with 
criterion-selected rise velocity (U= 0.156 m/s) or the specified U= 0.12 m/s. The shape profile of an 
axisymmetric realistic bubble is shown in (a) for comparison. 
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TABLE I 

Summary of Computational Results 

Case Geometry D 

cm 
IJ UN Fr TNIR 

N/m m/s 

1 Tube 5 0 0.242 0.345 0.714 
2 Tube 5 0.075 0.241 0.344 0.712 
3 Tube 2.5 0 0.170 0.344 0.709 
4 Channel 5 0 0.1562 0.223 0.653 
5 Channel 5 0.075 0.1560 0.223 0.648 

Note. p = 1,000 kg/m’; p = 0.001 N . s/m’, 

7. SUMMARY AND CONCLUSIONS 

A numerical method has been developed for computing the velocity field adjacent 
to a free surface along with the free surface shape for situations, where both the 
inertial and viscous terms in the equations of motion can be significant. The method 
is applied here to the case of a Taylor bubble whose shape is not initially known 
and which is translating upward in a vertical pipe. A thin liquid film falls around 
the bubble under the influence of gravity. This simulation is efficient for low 
viscosity and low surface tension liquids but can be extended for higher viscosity 
and surface tension. 

The methodology incorporates several novel techniques. 

(1) The gridding system of Williamson [25] was applied in such a way as to 
make possible the accurate application of the kinematic and shear stress conditions 
at the free surface. 

(2) A revision to the QUICKER discretizing method is presented which is 
accurate and converges rapidly for strong upstream convection terms and for condi- 
tions, where the velocity vector is highly skewed to the grid. 

(3) A method is developed for converging on the shape of the free surface 
based on the solution of a simple first-order differential equation. 

This treatment of the inclined boundary can be extended to a solution domain 
with two or more monotonic boundary arcs, such as an asymmetric bubble in a 
plane channel, a solitary wave on a liquid film, etc. 

The numerical simulation shows that multiple theoretical solutions exist for both 
a planar and axisymmetric Taylor bubbles in a pipe. That is, for every possible 
translation velocity one can find a shape which satisfies the Navier-Stokes equation 
and the boundary conditions. However, only one such velocity is observed 
experimentally. A simple geometric criterion has been proposed to single out the 
physically realistic translation velocity from the infinity of possible values. For any 
nonzero surface tension, no matter how small, this bubble must have a spherical 

581/91/l-11 
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nose in the local vicinity of the vertex. As a result the rate of change of curvature 
there is zero. The simulations show that only at one rise velocity is this criterion 
satisfied. Predicted values of the rise velocity calculated from such simulations are 
shown to be in excellent agreement with experiment. 
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